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A new approach to the measurement of turbulent fluxes 
in the lower atmosphere 

By R. J. TAYLOR 
C.S.I.R.O. Division of Meteorological Physics, Aspendale, Victoria, Australia 

(Received 28 November 1960) 

A method is described for the measurement of turbulent shearing stress and 
vertical heat flux by way of ‘structure functions ’-the mean square velocity 
and temperature differences between two points a known distance apart. The 
method is particularly suitable for shipboard use because it does not require the 
measurement of velocity components relative to a fixed frame of reference. An 
analysis of the available observations, although they are not ideally suited to the 
purpose, is encouraging and points the way to further development of the method. 

1. Introduction 
It has several times been noted (e.g. by McCready 1953; Taylor 1955) that, 

when autocorrelations in horizontal wind velocity components at two points are 
measured in the lower atmosphere, they show the particular dependence on the 
distance between the two points which is characteristic of the inertial subrange 
of eddy sizes, up to unexpectedly large distances-often as much as several times 
the height of observation. A rather convincing explanation of this phenomenon 
has been put forward by Gifford (1959), but, whatever the cause, there is no 
doubt that this simple property does, in fact, hold good over an extensive range 
of distances. 

Within this range, it is possible to derive expressions relating the vertical 
turbulent fluxes of heat and momentum with the mean square differences in 
temperature and velocity between two points-the so-called ‘structure func- 
tions ’. As pointed out by Deacon (1959), these could form the basis of a method 
for measuring the fluxes which would have obvious applications at sea since the 
only functions of velocity required would be differences. These, though affected 
to some extent by the ship’s motion, could be measured more accurately than 
velocity components relative to a fixed frame of reference. 

The theoretical basis of the method is set out below, and the available observa- 
tions are used to test it. Although the observations are not entirely suited to the 
purpose, a preliminary assessment is possible. 

2. Theoretical basis of the method 
If we write DJr) = [u(x) - u(z + r)]2, (1) 

where u is the velocity component in the downwind (x) direction and r is an incre- 
ment of distance in the same direction, then, in the inertial subrange, 

D,(r)cc %r+, (2) 
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where E is the rate of dissipation of kinetic energy per unit of mass. Obukhov & 
Yaglom (1951) derived a value for the constant in (2) and wrote 

DJr)  = 1 .6~38 .  (3) 

Their derivation rests on a value of -0.4 for the skewness in distribution of 
[ ~ ( x )  - u(x + r ) ] .  Some measurements by Stewart (1951) suggest that a rather 
smaller absolute value may be more appropriate and this would involve a larger 
constant in (3). For the present, equation (3) will be accepted as it stands, in the 
knowledge that some adjustment of this constant may later prove to be necessary. 

Equation (3) links E with a measurable function of wind velocities. As is well- 
known, E can also be expressed by the equation 

(neglecting divergence of vertical diffusion of turbulent kinetic energy) where 
T is the shearing stress, His  the vertical turbulent heat flux and the other symbols 
are standard notation. It is thus clearly possible, by way of equations (3) and (4) 
to estimate T from measurements of D, and the other quantities involved. 

The distribution of temperature fluctuations in a turbulent flow has not received 
as much attention as the dynamically more interesting problem of the velocity 
fluctuations. The earliest relevant work appears to be that of Obukhov (1949) 
who discussed temperature structure functions of the form 

D,(r) = [ T ( x )  - T ( x  + r)I2 

where T ( x )  and T ( x + r )  are the temperatures at points having co-ordinates 
zi and xi +ri respectively (i = 1,2,3). 

Obukhov introduces a dissipation function for temperature fluctuations 

where K is the thermal diffusivity of the fluid. (The summation convention for 
subscripts applies in equation (6).) He assumes that there exists a range of eddy 
sizes for which DT is a function of r ,  x and E only, and dimensional analysis then 
leads to the result that, for this range of sizes, 

Similarly, Corrsin (1951) obtained a spectrum of temperature fluctuation 
proportional to the minus five-thirds power of the wave-number, a result which 
is exactly equivalent to Obukhov's. In  sharp contrast, however, is a paper by 
Inoue (1952) who, using a very different theoretical basis, reached the conclusion 
that DT(r) is proportional to r t .  

A relationship between x and H was found by Tatarskii (1956) by assuming a 
logarithmic form of temperature profile and taking a simplified form of the equa- 
tion of conservation of internal energy. It is possible, however, to show that his 
relationship is valid even when the profile is not logarithmic and when certain 
terms, neglected by him, are taken into account. 
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The equation of motion of a fluid of variable density (see Jeffreys 1952) is 
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aui aui ap a# aaij = o, 
p- + p i - + - + p - - - -  at axi axi axi axj 

in which the summation convention applies. Here the ui are the velocity com- 
ponents, # is the geopotential and aii is a viscous stress given in full by 

where v is the kinematic viscosity and Sij = 1 or 0 according as i = j  or not. 
By multiplying equation (8) throughout by ui, we obtain the equation for con- 
servation of kinetic and potential energies : 

If radiative transfer is neglected, the equation for the conservation of energy 
(see de Groot, 1951) is 

where h is the thermal conductivity. 

equations (9) and (10) by subtraction, using the equation of continuity, and is 
Theequation for the conservation of internal energy is now derived from 

which reduces to 

where 6 is the potential temperature. 
If this equation is now multiplied through by a temperature fluctuation T’ 

and averaged and, further, the assumptions of steadiness in time and horizontal 
uniformity are made, it reduces to 

a8 a a 2  

aZ pax, ax; H - + +C - { ( p ~ ~ ) ’  T”} = p T  + h - (+F) -pep X, 

since fluctuations in T and 0 are nearly equal. The order of magnitude of terms in 
this equation will be estimated later. 

3. The observations 
The only available data suitable for testing the proposed method are those of 

Swinbank (1955). He gives, inter a h ,  values of momentum flux (which is equiva- 
lent to the shearing stress) and heat flux, determined from the covariance of the 
vertical velocity component with the horizontal-downwind component and with 
the temperature respectively. Records of velocity and temperature fluctuations 
at one point as a function of time were made as part of this investigation and it is 
possible to estimate structure functions from them as follows. 

29-2 
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Following G. I. Taylor (1938) it will be assumed that the autocorrelations 
behave as if the whole turbulent velocity and temperature fields were being 
swept along unchanged at the mean wind speed. The validity of this assumption 
in the lower atmosphere seems well established (see Gifford 1956; Taylor 1957). 
Thus structure functions for a distance r,  where r is aligned along the mean wind 
direction, are to be taken as equal to mean square differences for a time interval CT 
where r = W. This artifice is introduced solely in order to make use of existing 
data and is valid only if the point at which observations are made is fixed or in 
uniform motion. Aboard a ship, where the motion of the point of measurement 
would itself have autocorrelation, differences between two points would have 
to be measured directly. 

Those records made by Swinbank at  heights of 23 m and 29 m for which all the 
necessary subsidiary data were available have been used in this analysis. Obser- 
vations at these heights only were used because previous work had suggested 
that at lower levels much of the interesting part of the eddy structure was of 
too short a period to be properly taken into account by the recording galvano- 
meters used (natural period nominally 2.3 sec). 

The stresses tabulated by Swinbank are available to test the present method. 
Unfortunately, the decision to use autocorrelations at 23m and 29m only in- 
volved the use of stresses measured at the same height for comparison purposes, 
and it has been shown by Deacon (1955) that the 5 min recording period used was 
not long enough for all the eddies contributing to the momentum flux a t  those 
heights to be fully accommodated. His comparison of the stress measurements 
there with those a t  1.5 to 2 m led him to conclude that both sets of measurements 
are low by similar amounts, the former through the exclusion of low-frequency 
contributions, the latter through high-frequency cut-off. The latter effect has 
since been shown to amount to 20-30 % so, in what follows, Swinbank’s stresses 
have been corrected by an increase of 30% and are used as reference values 
denoted by r .  

No such correction to allow for apparent loss of flux due to the shortness of the 
observation period has been made to Swinbank’s values of heat flux because the 
effect does not seem to be as severe here (Deacon 1955). The tabulated heat 
fluxes have been taken without change and are denoted by H.  

It is clear from the above that these observations are far from ideal for testing 
the proposed structure-function method of estimating fluxes. Nevertheless, their 
application to this purpose is an obvious first step in verifying the method and will 
help in deciding whether a more refined programme of observations is justified. 

4. First estimate of shearing stress 
A total of 31 records with all necessary subsidiary observations was available 

and autocorrelations in u were calculated from them for time lags, (T, of about 
1, 2, 5 and 9sec for which experience had shown that equation (2) was fairly 
well obeyed at these heights. As a further test of this equation, the values of 
D, so obtained were plotted logarithmically against (T so as to determine the 
index p in the proportionality 

D u x  ap. 
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These values of p are shown in table 1 and the mean 0-63 & 0.03 is in satisfactory 
agreement with the expected value. 

Seven values of stress had previously been calculated (Taylor 1955) by the 
methods of $ 2  and had shown reasonable agreement on average with those 
measured by Swinbank. In  this calculation, however, the second term on the 

Date* 
8. xi. 51 
9. i. 52 
16. i. 52 
21. i. 52 
4. ii. 52 
4. ii. 52 
4. ii. 52 
13. ii. 52 
13. ii. 52 
25. ii. 52 
25. ii. 52 
25. ii. 52 
25. ii. 52 
25. ii. 52 
25. ii. 52 
26. ii. 52 
26. ii. 52 
26. ii. 52 
26. ii. 52 
26. ii. 52 
3. iii. 52 
3. iii. 52 
3. iii. 52 
3. iii. 52 
4. iii. 52 
19. iii. 52 
19. iii. 52 
19. iii. 52 
19. iii. 52 
9. vii. 52 
9. vii. 52 

RUIl 
no.* P 

2 0.75 
3 0.49 
6 0.45 
4 0.49 
2 0.75 
4 0.75 
6 0-75 
9 0.87 

11 0-81 
6 0.40 

11 0.73 
13 0.81 
15 0-51 
17 0.47 
19 0.60 
37 0.40 
39 0.73 
46 0.60 
48 0.78 
50 0-53 
4 0.65 
6 0.62 

10 0-47 
16 0.65 
48 0.55 
8 0.84 

10 0.70 
12 0.90 
16 0.67 
1 0.38 
3 0.47 
Mean 0.63 

Standard error of mean 0.03 

E erg a q a z  T~ (dyne 
(g-1 sec-l) (see-1) 

76.4 
27.8 
60.3 
88.4 
39.6 
40.0 

4.92 
2.35 
34.9 
45.5 
17-7 
53-1 
26.4 
12.6 
20.0 
21.4 
38.9 
79.7 
68.5 

57.5 
53.5 
11.7 
33.1 
79-3 
80.9 
90.3 
37-2 
6.08 
4.03 

132 

101 

- 
__ 

0.0291 3-00 
0.0134 -3.28 
0.0386 1-20 
0.0156 3.22 
0.0122 3.17 
0.00513 - 2.29 
0.00566 18.0 
0-0751 0.11 
0.0496 0.06 
0.0532 0.09 
0.0502 1.00 
0.0390 0.34 
0.0383 1.61 
0.0485 0.76 
0.0540 0.33 
0-0239 0.73 

0.0239 1.16 
0.0274 2-40 
0.0241 2-16 
0.0304 1.47 
0.0153 -3.53 
0.00996 3.20 
0.0414 0.43 
0.0209 1.10 
0.0575 2-03 
0.0268 3-55 
0.0328 2.90 
0.0410 0-95 
0.120 0-08 
0-104 0.06 

0.0117 -0.35 

- - 
- - 

7 (dyne 
em-*) Tlh 
1.83 1.64 

3.22 0.37 
2.35 1-37 
2.58 1.22 
1.90 - 1.21 
4.29 4.20 
0-56 0.20 
0.26 0.23 
2.06 0.05 
1-53 0.66 
2-26 0.15 
1-38 1.17 
1.34 0.57 
0.66 0.50 
0.44 1.66 

1.90 0.62 
3.39 0.71 
2.46 0.88 
1.23 1.19 
8.01 -0.44 
5.43 0-59 
0-35 1.23 
0.57 1.93 
4-70 0-43 
2.75 1-29 
4.71 0.62 
2.00 0-48 
0.32 0.25 
0.21 0.29 
- 0.69 
- 0.18 

2.66 -1.23 

2.72 -0.13 

* As shown by Swinbank (1955). 

TABLE 1. Results of velocity autocorrelation analysis. 

right of equation (4) was ignored since the observations concerned were mainly 
in the near-neutral condition. This comparison has now been extended by calcu- 
lating stresses from the 31 new sets of structure functions. 

Values of 8 (as shown in table 1) were calculated according to equation (3) by 
plotting D J a )  against a% and fitting a straight line through the origin by eye. 
To calculate the stress then by equation (4) it is also necessary to know the heat 
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flux and the velocity gradient at the height of observation. The values H tabu- 
lated by Swinbank were accepted for the former and the latter was calculated by 
fitting to the wind-speed observations at all available heights (which lay within 
the range 0.5-32m) an interpolation formula of the form au/& = az-8 where 
a and p are disposable constants. The values of shearing stress so calculated are 
denoted by Tl and are shown in table 1. 

The ratio T1/7 was also calculated for each run (see table 1) and its mean is 
0.69 k 0.18. The expected value of unity is barely within the range of twice the 
standard deviation from that observed and it might appear that some adjust- 
ment of the constant in equation (3) is needed. This possibility is hardly surprising 
when it is recalled that the constant rests ultimately on a laboratory measure- 
ment of the skewness in distribution of [u(x) - u ( x + ~ ) ]  which is itself open to 
doubt and that a very great change in scale is involved in its application here. 

5. The heat flux 
Little experimental evidence has been brought to bear on the question of 

whether DT(r) is proportional to r3 or r4. Inoue (1952) quotes some observations 
by Crain & Gerhardt (1951) and claims that they support his own proposed r4 
relationship. On the other hand, Shiotani (1955) and Tatarskii (1956)) on the 
basis of observations which they adduce, both support the proposals of Obukhov 
and Corrsin. In view of this disagreement, it  seemed desirable to examine the 
available observations on the point. 

Autocorrelations at time lags, cr, were therefore calculated from temperature 
records of Swinbank's (1953) investigation. There were available 28 records 
suitable for this purpose which were also accompanied by the subsidiary data 
needed for heat flux estimation (see below). It was assumed that the limits of 
inertial subrange behaviour would be similar to those for velocity fluctuations 
and approximately the same values of cr were used. Logarithmic plotting of 
DT against cr then gave the indexp as shown in table 2. The meanp of 0.64 5 0.03 
unequivocally supports the 'two-thirds ' law for the structure function, as 
expressed in equation (7). The constant; of proportionality in this equation 
is, of course, not yet determined and a purely empirical value will later be 
derived. 

To obtain some idea of the relative magnitudes of the terms in equation (13)) 
four of the available records were analysed in detail. They were made in lapse 
conditions with an average Richardson number (at 1.5m) of -0.051. On the 
average over these four runs, it  was found that: 

a3 
a Z  

H - = - 14.4 erg "C cm-3sec-l, 

&,Pw'T'~ = + 0.30 erg "C (tm-2sec-1, 

pc(Tr2)4 = + 0.02 erg "C cmS sec-l, 

a 2  - 
a22 2 

A- ( IT t2 )  M lO-5erg "C cm-3sec-l; 

(w is the vertical velocity component). 
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As far as this evidence takes us, therefore, we are clearly justified in writing 
approximately H a8 

= -Gz' 
This is equivalent to the equation finally arrived at by Tatarskii (1956). 

Run 
Date no. 

16. i. 52 6 
21. i. 52 2 
21. i. 52 4 
4. ii. 52 2 
4. ii. 52 4 
4. ii. 52 6 
13. ii. 52 9 
25. ii. 52 6 
25. ii. 52 11 
25. ii. 52 13 
25. ii. 52 15 
25. ii. 52 17 
25. ii. 52 19 
26. ii. 52 37 
26. ii. 52 39 
26. ii. 52 46 
26. ii. 52 48 
26. ii. 52 50 
3. iii. 52 4 
3. iii. 52 6 
3. iii. 52 10 
3. iii. 52 16 
4. iii. 52 48 
19. iii. 52 10 
19. iii. 52 12 
19. iii. 52 10 
9. vii. 52 1 
9. vii. 52 3 

Mean 
Standard error of mean 

P 
0.65 
0.51 
0.45 
0.34 
0.58 
0.78 
0.65 
0.93 
0.47 
0.49 
0-73 
0.47 
0-62 
0.78 
0.97 
0.58 
0.75 
0-58 
0.78 
0.78 
0.78 
0.87 
0-67 
0-58 
0.36 
0.90 
0.27 
0.47 
0.64 
0.03 

X 

see+ 
7.36 

1 0-4 ( oc )a 

25.6 
25.2 

11.1 
41.0 

5.31 

0.233 
3.44 
0.415 
0-710 
0.221 
0.971 
1.27 
1.23 
1.89 
5-35 

13-1 
10-6 
24.0 
24-3 

1.89 
0.916 
1.32 
0.864 
1-66 
1.26 
1.87 
2-29 
- 
- 

ae/az 
10-6 "C 
cm-l 
- 159 
- 200 
- 156 
- 136 
- 142 
- 192 

98.5 
- 125 
- 61.8 
- 17.4 
- 11.4 

44.1 
44.7 

- 138 
- 130 
- 145 
- 145 
- 150 
- 169 
-217 
- 206 

116 
- 42.9 
- 296 
- 114 
- 111 

440 
300 
- 
- 

HI H 
(mWcm-*) (mWcm-a) 

5.58 8.0 
15.3 21.0 
19.4 17.1 
4-70 2.7 
9.40 18.3 

25.6 17.4 

3.31 11.3 
0-80 1.3 
4.90 2- 4 
2.33 0.6 

- 2.64 - 1.6 
- 3.41 - 0.8 

1.07 2.0 
1-75 9.1 
4.42 5.8 

10.8 9- 1 
8.49 9.2 

17.0 23.4 
13.4 37.7 
1.10 9.9 

- 0.95 - 1.1 
3.69 5- 1 
0.35 0.6 
1.75 4.0 
1-36 1.7 

-0.28 - 0.8 

- 0.51 - 0.7 
- 0.92 - 0.3 

TABLE 2. Results of temperature autocorrelation analysis. 

HlIH 
0.70 
0.73 
1.13 
1.74 
0.51 
1-47 
0-35 
0.29 
0.62 
2.04 
3.89 
1-65 
4.26 
0.54 
0.19 
0.76 
1.19 
0.92 
0.73 
0.36 
0.11 
0-86 
0.72 
0-58 
0.44 
0.80 
0.73 
3.06 
1.12 
0.20 

Values of x as shown in table 2 were calculated from the temperature auto- 
correlations by means of equation (7), tentatively taking the constant of pro- 
portionality as unity and using e as given in table 1. Heat fluxes, HI, were then 
obtained from equation (14). The potential temperature gradients required were 
derived from the original observations of temperature at heights within the 
range 0.5-30 m by fitting an interpolation formula of the form @/az = a d .  

These values of Hl are shown in table 2 and are compared with Swinbank's 
values, H ,  by calculating Hl/H. The mean value of HJH was 1.12 k 0.20 and it 
thus appears that 1-12 is the best available estimate for the constant in equation 
(7). New heat fluxes, H,, were calculated on this basis and it is obvious that the 
mean H,/H must be 1.00 k 0.18. 
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6. The second estimate of stress 
The stress estimation in 0 4 involved a heat flux derived from the covariance 

between the temperature and the vertical velocity component. It is obviously 
desirable particularly for shipboard use to eliminate this type of measurement 
altogether and to use heat fluxes derived as in 5 5. If we write 

a = DJr)  r 4 ,  b = D,(r) r-9, 

then, using the proposed value of 1.12 for the constant in (7), it  follows that 

and hence, by the use of (4), we derive a new estimate, T,, for the shearing stress. 
This has been done for those 27 observations for which both temperature and 
velocity information was available, and it was found that the mean value of 
T2/r was 0.99 f 0-15. The individual values of T,/T are given in table 3. 

Date 
16. i. 52 
21. i. 52 
4. ii. 52 
4. ii. 52 
4. ii. 52 
13. ii. 52 
25. ii. 52 
25. ii. 52 
25. ii. 52 

RUIl 
no. TP/r 

6 0.44 
4 1.34 
2 1.06 
4 2.05 
6 3.40 
9 0.16 
6 0.29 

11 0.67 
13 0.08 

Date 
25. ii. 52 
25. ii. 52 
25. ii. 52 
26. ii. 62 
26. ii. 52 
26. ii. 52 
26. ii. 52 
26. ii. 52 
3. iii. 52 

RUIl 
no. 
15 
17 
19 
37 
39 
46 
48 
50 
4 

T217 

1.07 
0.60 
0.70 
1.98 
0-63 
0.73 
0-68 
0.96 
1.88 

Date 
3. iii. 52 
3. iii. 52 
3. iii. 52 
4. iii. 52 
19. iii. 52 
19. iii. 52 
19. iii. 52 
9. vii. 52 
9. vii. 52 

RUIl 
no. T2/r 

6 0.25 
10 1.12 
16 1.15 
48 2.45 
10 1.29 
12 0.67 
16 0.49 
1 0.22 
3 0.35 

TDLE 3. Values of T2/r. 

During a 5 min observation period it is not likely that all the assumptions 
made in deriving the expression for T, will hold good. Those of horizontal 
uniformity and steadiness in time, in particular, may break down over short 
periods. However, the coefficient of correlation between T, and T is 0.49 which 
is significant at the 1 yo level, while the coefficient of regression of on T is 
1.00 & 0.36. Figure 1 shows the T2 and 7 values with the calculated regression 
line. 

In  the practical use of the structure-function method it is quite reasonable that 
a number of 5 min runs--or of runs over a longer period of observation-should 
be taken in order to average out the effects referred to above. The values of 
and T were therefore subdivided into groups according to the magnitude of 7, 
and mean T, and T were calculated for each group as shown in table 4. The coeffi- 
cient of correlation between the two groups of means is 0.99. 

A further subdivision of the T2 results according to Richardson number at 
1.5 m 

Application of the method of combining probabilities due to Fisher (1948, 
p. 99) indicates that the probability of the set of deviations of T2/7 from unity 

was made and is shown in table 5. 
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being due to chance is 0.03 and it appears, therefore, that the trend of T2/r with 
stability shown in table 5 is significant. 
This trend may, in part, be explained in terms of instrumental response 

characteristics. T, and r were obtained ultimately from the same galvanometer 
records but, as stability increases, the turbulent energy moves further and further 
into smaller eddy sizes. Since the eddies contributing to the structure function 
measurement are smaller than the strongly anisotropic ones entering into the 

16 

14 

12 

10 

8 T2 

6 

4 

2 

n 
0 1 2 3 4 5 6 7 

7 

FIGURE 1. Comparison of stresses measured by two methods (individual 5 min runs). 

No. of 
Group observations Mean T Mean T, 

A 5 0.29 0.30 f 0.15 
B 6 0.86 1.24 f 0.26 
C 5 1.56 1-41 f 0.65 
D 6 2.06 2.49 f 0.34 
E 5 3.98 5.63 2.36 
TABLE 4. Means of T, and 7, according to magnitude of 7. 

No. of 
Group observations Mean R&, Mean T,/T 

F 6 + 0.029 0.53 0-15 
G 5 - 0.007 0.59 f 0.15 
H 6 - 0.015 0-84 f 0.24 
J 5 - 0.031 1.38 5 0.29 
K 5 - 0.087 1.72 f 0.52 

TABLE 5. Values of T,/T, according to stability. 
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covariances, it might well be expected that the failure of the galvanometers to 
respond fully to the fine detail of the turbulence would affect T2 more strongly 
than 7 and the more so as stability increases. However, it would also be expected 
that this effect would cause T, to be less than 7 in all conditions of stability so 
that all the features of table 5 cannot be explained in this way. This fact, together 
with the rather large difference between the means of T1/7 and T2/7, make it 
unlikely that the values of the constants used in equations (3) and (7) can yet be 
regarded as firm for use in the lower atmosphere. 

7. Conclusion 
The results of the previous sections are encouraging and suggest that it maybe 

possible to estimate stress or heat flux from a group of some thirty 5 min measure- 
ments of structure function with a standard error of 15-20 %. More observations, 
specially designed for the purpose, need to be made, however, to get more 
secure values for the two constants of proportionality and to elucidate stability 
effects, particularly in so far as they concern the instrumental response charac- 
teristics required. 

It is worthy of note that equation (12) is essentially a conservation equation 
and that a similar equation could be constructed for water-vapour concentration. 
A structure-function method, involving mean-square humidity differences, 
could thus probably be developed for the assessment of the vertical turbulent 
flux of water-vapour, that is, the rate of evaporation from the underlying surface. 

I have had the benefit of much discussion with Dr U. Radok and Mi E. K. 
Webb. Mr E. L. Deacon provided information on the probable errors in the 
reference stresses and the differential-analyser calculations of the autocorrela- 
tions were carried out under the direction of Mr N. E. Bacon. 

The material included in this paper has formed part of a thesis submitted to the 
University of Melbourne. 
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